[image: image1.jpg]VC-ID

COURSE IDENTIFICATION NUMBER SYSTEM

DESCRIPTOR

	Discipline: Computer Science (COMP)
	Sub-discipline:

	General Course Title:

Programming Concepts and Methodology II
	Min. Units 3

	General Course Description:

Application of software engineering techniques to the design and development of large

programs; data abstraction and structures and associated algorithms.

	Number: COMP 132
	Suffix:

	Second course in a sequence of courses that is compliant with the standards of the Association for

Computing Machinery (ACM).

	Required Prerequisites or Co-Requisites
 Prerequisite: COMP 122

	Advisories/Recommended Preparation

	Course Content:

I. Programming Fundamentals (PF)

PF3. Fundamental data structures

Minimum coverage time: 12 hours

Topics

1. Primitive types

2. Arrays

3. Records

4. Strings and string processing

5. Data representation in memory

6. Static, stack, and heap allocation

7. Runtime storage management

8. Pointers and references

9. Linked structures

10. Implementation strategies for stacks, queues, and hash tables

11. Implementation strategies for trees

12. Strategies for choosing the right data structure

Learning Outcomes

1. Discuss the representation and use of primitive data types and built-in data

structures;

2. Describe how the data structures in the topic list are allocated and used in

memory;

3. Describe common applications for each data structure in the topic list;

4. Implement the user-defined data structures in a high-level language;

5. Compare alternative implementations of data structures with respect to
performance;

6. Write programs that use each of the following data structures: arrays,

records, strings, linked lists, stacks, queues, and hash tables;

7. Compare and contrast the costs and benefits of dynamic and static data

structure implementations; and

8. Choose the appropriate data structure for modeling a given problem.

PF4. Recursion

Minimum coverage time: 5 hours

Topics

1. The concept of recursion

2. Recursive mathematical functions

3. Simple recursive procedures

4. Divide-and-conquer strategies

5. Recursive backtracking

6. Implementation of recursion

Learning outcomes

1. Describe the concept of recursion and give examples of its use;

2. Identify the base case and the general case of a recursively defined problem;

3. Compare iterative and recursive solutions for elementary problems such as

factorial;

4. Describe the divide-and-conquer approach;

5. Implement, test, and debug simple recursive functions and procedures;

6. Describe how recursion can be implemented using a stack;

7. Discuss problems for which backtracking is an appropriate solution; and

8. Determine when a recursive solution is appropriate for a problem.

II. Programming Languages (PL)

PL4. Declarations and types

Minimum coverage time: 3 hours

Topics

1. The conception of types as a set of values together with a set of operations

2. Declaration models (binding, visibility, scope, and lifetime)

3. Overview of type-checking

4. Garbage collection

Learning outcomes

1. Explain the value of declaration models, especially with respect to

programming-in the-large;

2. Identify and describe the properties of a variable such as its associated

address, value, scope, persistence, and size;

3. Discuss type incompatibility;

4. Demonstrate different forms of binding, visibility, scoping, and lifetime

management;

5. Defend the importance of types and type-checking in providing abstraction
and safety; and

6. Evaluate tradeoffs in lifetime management (reference counting vs. garbage

collection).

PL5. Abstraction Mechanisms

Minimum coverage time: 3 hours

Topics

1. Procedures, functions, and iterators as abstraction mechanisms

2. Parameterization mechanisms (reference vs. value)

3. Activation records and storage management

4. Type parameters and parameterized types - templates or generics

5. Modules in programming languages

Learning outcomes

1. Explain how abstraction mechanisms support the creation of reusable

software components;

2. Demonstrate the difference between call-by-value and call-by-reference

parameter passing;

3. Defend the importance of abstractions, especially with respect to

programming-in-the-large; and

4. Describe how the computer system uses activation records to manage

program modules and their data.

PL6. Object-oriented programming

Minimum coverage time: 10 hours

Topics

1. Object-oriented design

2. Encapsulation and information-hiding

3. Separation of behavior and implementation

4. Classes and subclasses

5. Inheritance (overriding, dynamic dispatch)

6. Polymorphism (subtype polymorphism vs. inheritance)

7. Class hierarchies

8. Collection classes and iteration protocols

9. Internal representations of objects and method tables

Learning outcomes

1. Justify the philosophy of object-oriented design and the concepts of

encapsulation, abstraction, inheritance, and polymorphism;

2. Design, implement, test, and debug simple programs in an object-oriented

programming language;

3. Describe how the class mechanism supports encapsulation and information

hiding;

4. Design, implement, and test the implementation of “is-a” relationships

among objects using a class hierarchy and inheritance;

5. Compare and contrast the notions of overloading and overriding methods
in an object-oriented language;

6. Explain the relationship between the static structure of the class and the

dynamic structure of the instances of the class; and

7. Describe how iterators access the elements of a container.

III. Software Engineering (SE)

SE1. Software design

Minimum coverage time: 8 hours

Topics

1. Fundamental design concepts and principles

2. Design strategy

Learning outcomes

1. Discuss the properties of good software design; and

2. Compare and contrast object-oriented analysis and design with structured

analysis and design.

Laboratory Activities: (if applicable)

	Course Objectives: At the conclusion of this course, the student should be able to:
1. Write programs that use each of the following data structures: arrays, records, strings, linked lists, stacks, queues, and hash tables
2. Implement, test, and debug simple recursive functions and procedures
3. Evaluate tradeoffs in lifetime management (reference counting vs. garbage collection)

4. Explain how abstraction mechanisms support the creation of reusable software components

5. Design, implement, test, and debug simple programs in an object-oriented programming language

6. Compare and contrast object-oriented analysis and design with structured

analysis and design

	Methods of Evaluation: May include any or all of

Exams

Quizzes

Programming Projects

Discussions

Class Presentations

	Sample Textbooks, Manuals, or Other Support Materials

Data Abstraction and Problem Solving with C++: Walls and Mirrors Latest Edition by Frank M. Carrano

	FDRG Lead Signature: Date:

	[For Office Use Only]
	 Internal Tracking Number

	

	

Descriptor Guide Sheet

Discipline: The discipline has been determined and is entered.

Subdiscipline: You may decide that a sub-discipline will serve your discipline best. For example, biology faculty may or may not decide to identify subdivisions (cellular vs. organismic, or marine, or ecology/environmental). Discipline faculty will determine what best serves their needs.

General Course Title: Insert a course name in this field that is generally used and will be widely recognized. It need not be the actual course title at all colleges or universities but should describe the topic of the course.

Minimum Units: Indicate the minimum number of units expected of this course, based on semester configuration; we will later offer a conversion into quarter units.

Proposed Number: Use the numbering protocol to assign a tentative number to the course; like the sub-discipline or general course title, during your drafting stages, this number can be changed.

Proposed Suffix: If desirable, add an “L” after the number in the box to indicate a lab; or an “S” to indicate this course is part of a sequence.

Rationale or Comment: Use this space to provide explanation to the field about the number; during the drafting stage, you may also use this space to record a request for an additional suffix or modification of the numbering protocol.

Required Prerequisites or Co-Requisites: List any courses required to be completed prior to taking the listed course; if there is not agreement among segmental faculty about the prerequisites, you might consider describing a similar course without those prerequisites or listing only Advisories/Recommended Preparation (see below). A co-requisite does not mean in the CCCs what it may mean for the 4-year institutions.

Advisories/Recommended Preparation: These recommendations for courses, experiences, or preparation need not be validated; they can be good-faith and generally accepted recommendations from discipline faculty that further the students’ chances of success in this or subsequent courses.

Course Content: Count content should list all the expected and essential topics of the course. If this course is a lab/lecture combination, the Lab content should be spelled out separately.

Course Objectives: List the course objectives, competencies, or skills that the students should be able to demonstrate upon completion of the course. Community college faculty should be attentive to explicitly linking the objectives to the topics covered. If this course is a lab/lecture combination, again the learning objectives should be spelled out separately and be linked to the topics covered in the lab component of the course. Use additional sheets as needed.

Methods of Evaluation: List those methods you anticipate would be used to observe or measure the students’ achievement of course objectives (e.g., quizzes, exams, laboratory work, field journals, projects, research, demonstrations, etc.)

Textbooks: Recent (published within the past 5-6 years) college-level texts, materials, software packages can be suggested here. While texts used by individual institutions and even individual sections will vary, enter examples of representative work. If this is a lab course or a lab/lecture section, remember to include an example of a lab manual.

FDRG Lead’s Signature and Date: When the descriptor template has been finalized by the FDRG is in final form and is ready for posting, the Lead should send this completed and signed document to Katey Lewis at Katey@asccc.org who will post the descriptor and solicit review and comment prior to finalizing the descriptor for the next phase of the C-ID Project.
� Prerequisite or co-requisite course need to be validated at the CCC level in accordance with Title 5 regulations; co-requisites for CCCs are the linked courses that must be taken at the same time as the primary or target course.

� Advisories or recommended preparation will not require validation but are recommendations to be considered by the student prior to enrolling.

[image: image1.jpg]