[image: image1.jpg]VC-ID

COURSE IDENTIFICATION NUMBER SYSTEM

DESCRIPTOR

	Discipline: Computer Science
	Sub-discipline:

	General Course Title:

Programming Concepts and Methodology I
	Min. Units 3

	General Course Description:
Introduces the discipline of computer science using a high level language utilizing programming and practical hands-on problem solving.

	Number: COMP 122
	Suffix:

	First course in a sequence of courses that is compliant with the standards of the Association for Computing Machinery (ACM).

	Required Prerequisites or Co-Requisites
 Prerequisite: None

	Advisories/Recommended Preparation
 COMP 112 (CS0) or Comparable Experience

	Course Content:

I. Programming Fundamentals (PF)

PF1. Fundamental programming constructs

Minimum coverage time: 9 hours

Topics

1. Basic syntax and semantics of a higher-level language

2. Variables, types, expressions, and assignment

3. Simple I/O

4. Conditional and iterative control structures

5. Functions and parameter passing

6. Structured decomposition

Learning Outcomes

1. Analyze and explain the behavior of simple programs involving the

fundamental programming constructs covered by this unit;

2. Modify and expand short programs that use standard conditional and

iterative control structures and functions;

3. Design, implement, test, and debug a program that uses each of the

following fundamental programming constructs: basic computation, simple

I/O, standard conditional and iterative structures, and the definition of

functions;

4. Choose appropriate conditional and iteration constructs for a given

programming task;

5. Apply the techniques of structured (functional) decomposition to break a

program into smaller pieces; and

6. Describe the mechanics of parameter passing.

PF2. Algorithms and problem-solving

Minimum coverage time: 6 hours

Topics

1. Problem-solving strategies

2. The role of algorithms in the problem-solving process

3. Implementation strategies for algorithms

4. Debugging strategies

5. The concept and properties of algorithms

Learning outcomes

1. Discuss the importance of algorithms in the problem-solving process;

2. Identify the necessary properties of good algorithms;

3. Create algorithms for solving simple problems;

4. Use pseudocode or a programming language to implement, test, and debug

algorithms for solving simple problems; and

5. Describe strategies that are useful in debugging.

II. Programming Languages (PL)

PL1. Overview of programming languages

Minimum coverage time: 2 hours

Topics

1. History of programming languages

2. Brief survey of programming paradigms

3. Procedural languages

4. Object-oriented languages

Learning outcomes

1. Summarize the evolution of programming languages illustrating how this

history has led to the paradigms available today; and

2. Identify at least one distinguishing characteristic for each of the

programming paradigms covered in this unit.

PL4. Declarations and types

Minimum coverage time: 3 hours

Topics

1. The conception of types as a set of values together with a set of operations

Declaration models (binding, visibility, scope, and lifetime)

2. Overview of type-checking

Learning outcomes

1. Explain the value of declaration models, especially with respect to

programming-in-the-large;

2. Identify and describe the properties of a variable such as its associated

address, value, scope, persistence, and size;

3. Discuss type incompatibility;

4. Demonstrate different forms of binding, visibility, scoping, and lifetime

management; and

5. Defend the importance of types and type-checking in providing abstraction

and safety.

Topics fulfilling these tasks and outcomes could include OOPS and other programming elements. This course is recommended to contain hands-on programming and problem solving tasks.

	Course Objectives: At the conclusion of this course, the student should be able to:
1. Design, implement, test, and debug a program that uses each of the following fundamental programming constructs: basic computation, simple I/O, standard conditional and iterative structures, and the definition of functions;

2. Use pseudocode or a programming language to implement, test, and debug algorithms for solving simple problems
3. Summarize the evolution of programming languages illustrating how this history has led to the paradigms available today
4. Demonstrate different forms of binding, visibility, scoping, and lifetime management

	Methods of Evaluation: May include any or all of

Exams

Quizzes

Programming Projects

Discussions

Class Presentations

	Sample Textbooks, Manuals, or Other Support Materials

Savitch, Walter: Problem Solving with C++ Latest Edition

	FDRG Lead Signature: Date: 5/12/12

	[For Office Use Only]
	 Internal Tracking Number

	

	

� Prerequisite or co-requisite course need to be validated at the CCC level in accordance with Title 5 regulations; co-requisites for CCCs are the linked courses that must be taken at the same time as the primary or target course.

� Advisories or recommended preparation will not require validation but are recommendations to be considered by the student prior to enrolling.

[image: image1.jpg]